
Message Authentication (MAC) Algorithm For The VMPC-R
(RC4-like) Stream Cipher

Bartosz Zoltak

www.vmpcfunction.com
bzoltak@vmpcfunction.com

Abstract. We propose an authenticated encryption scheme for the VMPC-R stream cipher.
VMPC-R is an RC4-like algorithm proposed in 2013. It was created in a challenge to find a bias-free
cipher within the RC4 design scope and to the best of our knowledge no security weakness in it
has been published to date. The contribution of this paper is an algorithm to compute Message
Authentication Codes (MACs) along with VMPC-R encryption. We also propose a simple method
of transforming the MAC computation algorithm into a hash function.

Keywords: stream cipher; RC4; VMPC-R; distinguishing attack; bias;
Message Authentication Code (MAC); hash function

1 Introduction

Stream ciphers follow a natural concept of encrypting data with a pseudorandom keystream.
One of the many approaches to stream cipher construction is an RC4-like design scope. A large
number of weaknesses were found in RC4: [12], [7], [8], [16], [22], [23], [25] list just a small subset
of them. Many of them are distinguishing attacks, revealing statistical deviations (biases) of
various statistical properties of the generated keystream from a perfectly random model.

Many attempts to improve the design of RC4 were made, however none of the ones we are
aware of (RC4A, VMPC, IA, IBAA, ISAAC, Py, Py6, PyPy, NGG, GGHN, HC-256, Spritz, to
name just a few) managed to resist new distinguishing attacks. Spritz [5] was an attempt by the
designer of the original RC4 himself, Ronald Rivest and Jacob Schuldt. Spritz was attacked in
[3], [6].

In 2010-2013 we made our own attempt to contribute to the challenge. We devised a battery
of statistical tests specifically for the job, utilized over 100 computers to perform the testing,
considered hundreds of design ideas and arrived at a single algorithm capable of passing the
tests. We probed over 1015,3 outputs of the final candidate with different word sizes and found
no bias in its output. See [2] for more details.

We also tested a large number of the known RC4-like algorithms and our battery revealed
biases in any of them, including Spritz. See [4] and [3].

To the best of our knowledge, VMPC-R produces (by far) the highest quality output in
terms of statistical properties among all the RC4-like ciphers we know of. Although VMPC-R
was published in 2013, we are still not aware of any publication reporting any weakness in it.
The suffix ”R” in the name of the algorithm, VMPC-R, stands for Random.

One disadvantage of VMPC-R is its low efficiency. On a 3 GHz desktop PC processor in
assembler implementation it obtains the efficiency of about 70 Mbytes/s (or 560 Mbits/s). We
believe that the possible scope of its practical applications is limited to either low-bandwidth or
small-data-size applications. One example could be the encryption of text. To illustrate, 1000
A4 pages of text could be encrypted with VMPC-R in about 0,05 of a second.

However the purpose of designing VMPC-R was not as much practical, as theoretical.
VMPC-R was our attempt to answer a simple question - how complex an RC4-like algorithm
would need to be to actually produce a keystream indistinguishable from a truly random source.



Note that VMPC-R is the simplest algorithm that we were able to build to pass the statistical
tests we threw at it. This way the results were both a success and a failure: we found an unbiased
(according to our results) RC4-like algorithm, but its complexity was so high that it hampered its
efficiency below the level required to consider it a practical general-purpose encryption algorithm.

2 Contribution of this paper

The contribution of this paper is the proposition of an authenticated encryption scheme for
VMPC-R. In practical applications message authentication is often an indispensable feature. It
provides the means of verification whether the message was correctly decrypted. For this purpose,
a Message Authentication Code (MAC, which is conceptually a checksum of the message and the
key) is attached to the ciphertext. The MAC is also evaluated upon decryption and compared
with the value stored with the ciphertext. If both are identical, the decrypted message can be
deemed identical with the original plaintext. We also propose a simple method to transform the
MAC algorithm into a hash function.

3 The VMPC-R Stream Cipher

Specification of VMPC-R can be found in Table 1. The internal state of the algorithm is initial-
ized with the Key Scheduling Algorithm (KSA) specified in Table 2.

Table 1. VMPC-R Stream Cipher

N : word size; N ∈ {2, ..., 256}. Proposition: N = 256
a, b, c, d, e, f, n : integer variables
P, S : N -element permutations of integers {0, ..., N − 1}
+ denotes addition modulo N

Function VMPC-R-Stream(x):
reset output
repeat x times {

append VMPC-R-Stream-Data to output
VMPC-R-Stream-Swap }

Function VMPC-R-Stream-Data:
a = P [a + c + S[n]]
b = P [b + a]
c = P [c + b]
d = S[d + f + P [n]]
e = S[e + d]
f = S[f + e]
output S[S[S[c + d]] + 1]

Function VMPC-R-Stream-Swap:
swap P [n] with P [f ]
swap S[n] with S[a]
n = n + 1



Table 2. VMPC-R Key Scheduling Algorithm

N,P, S, a, b, c, d, e, f, n defined in Table 1
k : length of key; k ∈ {1, ..., N}
K : key; array of k integers
v : length of initialization vector; v ∈ {1, ..., N}
V : initialization vector; array of v integers
i : temporary integer variable
+ denotes addition modulo N

Function VMPC-R-KSA(K, k, V, v, z):
if (z = 0) set {a = b = c = d = e = f = 0; ∀i ∈ {0, ..., N − 1}(P [i] = S[i] = i)}
KSARound(K, k)
KSARound(V, v)
KSARound(K, k)
n = S[S[S[c + d]] + 1]
VMPC-R-Stream(N)

Function KSARound(Y, y):
set {n = 0; i = 0}
repeat N · dy2/(6N)e times {

a = P [a + f + Y [i]] + i; i = (i + 1) mod y
b = S[b + a + Y [i]] + i; i = (i + 1) mod y
c = P [c + b + Y [i]] + i; i = (i + 1) mod y
d = S[d + c + Y [i]] + i; i = (i + 1) mod y
e = P [e + d + Y [i]] + i; i = (i + 1) mod y
f = S[f + e + Y [i]] + i; i = (i + 1) mod y

swap P [n] with P [b]
swap S[n] with S[e]
swap P [d] with P [f ]
swap S[a] with S[c]

n = n + 1 }



4 Authenticated encryption with VMPC-R

Message authentication is usually obtained using hash functions, which fed with the key, produce
message-and-key-unique Message Authentication Codes (MAC). We propose to produce MACs
without hash functions by integrating some additional operations with our cipher and utilizing
its internal state. We also transform the proposed MAC algorithm into a hash function. The
scheme can also work with many other RC4-like stream ciphers. Its specification can be found
in Table 3.

Table 3. VMPC-R-MAC authenticated encryption scheme

N,P, S, a, b, c, d, e, f, n defined in Table 1
K, k, V, v defined in Table 2
q : security level; q ∈ {4, ..., 16}. Proposition: q = 8
T : array of q integers
M : array of q2 integers
h : integer variable
L : length of message
Z : message; array of L integers
LM : length of the MAC; LM ∈ {1, ..., q2}. Proposition: LM = q2

i, j : temporary integer variables
+ denotes addition modulo N

set {h = 0; ∀i ∈ {0, ..., q − 1}(T [i] = 0); ∀i ∈ {0, ..., q2 − 1}(M [i] = 0)}
VMPC-R-KSA(K, k, V, v, 0)
EncryptMAC
Mix
VMPC-R-KSA(M, q2, T, q, 1)
MAC = VMPC-R-Stream(LM )

Function EncryptMAC:
for (j = 0, ..., L− 1) repeat {

Z[j] = Z[j] xor VMPC-R-Stream-Data
for (i = 0, ..., q − 2) repeat {

T [i] = P [T [i] + T [i + 1] + i] }
T [q − 1] = P [T [q − 1] + e + Z[j]]
for (i = 0, ..., q − 1) repeat {

M [h + i] = M [h + i] xor T [i] }
h = (h + q) mod q2

VMPC-R-Stream-Swap }
Function Mix:

for (j = 1, ..., 2q) repeat {
VMPC-R-Stream-Data
for (i = 0, ..., q − 2) repeat {

T [i] = P [T [i] + T [i + 1] + j + i] }
T [q − 1] = P [T [q − 1] + b + j + q − 1]
for (i = 0, ..., q − 1) repeat {

M [h + i] = M [h + i] xor T [i] }
h = (h + q) mod q2

VMPC-R-Stream-Swap }



4.1 Design rationale

The general idea is to update the T array with the consecutive ciphertext words in such a way
that a change of any plaintext/ciphertext word changes each element of T with probability 1.
At the same time these changes are spread through the M array by leaving footprints of T on
the consecutive q-element blocks of the q-times larger M array.

After encryption is finished the T and M arrays are mixed further with the Mix function to
ensure that a change of last words of plaintext/ciphertext are spread through T and M with the
required intensity and to thwart certain attack scenarios which will be discussed in Section 4.3.

The +i operation in the T [i] = P [T [i] + T [i + 1] + i] step ensures that the T elements will
not fall into a temporary state where from N consecutive equal T elements, N −1 would remain
equal in the next iteration.

The extent of spreading the unconditional changes of T onto M appears to be hard to control
and according to the most efficient message forgery attack we could find (see Section 4.6) the
security of the scheme is N q(q+5)/2−1. For q = 8 it evaluates to N−51 (408 bits with N = 256).

4.2 The unconditional changes to T

For notation simplicity let’s assume h = 0. P is a permutation, therefore the T [q− 1] = P [T [q−
1]+e+Z[j]] operation would change the value of T [q−1] with probability 1 if Z[j] was changed.
As a result M [q − 1] = M [q − 1] xor T [q − 1] would also change with probability 1.

In the next iteration the change of T [q − 1] will spread further onto T regardless of what
new Z values are fed to the algorithm: T [q− 2] = P [T [q− 2] +T [q− 1] + q− 2] will change with
probability 1. As a result M [2q − 2] = M [2q − 2] xor T [q − 2] will change with probability 1,
too. The process will continue through q iterations and in effect, T [q − 1], T [q − 2], T [q − 3],...,
T [0] and M [q − 1], M [2q − 2], M [3q − 3],..., M [q2 − q] will be changed with probability 1. This
property will be investigated further in Section 4.6.

4.3 The Mix function

The first objective of the Mix function is to spread the last words of the message onto all the
elements of T and M . We analyse it further in the diffusion effect in Section 4.4.

The second objective is to thwart forgery attacks which increase the length of the message.
The same input data transformed by the encryption phase by T [i] = P [T [i] + T [i + 1] + i] and
in each iteration of the Mix function by T [i] = P [T [i] + T [i + 1] + j + i] will produce different
outputs in each of the cases (the value of j is different in each iteration of Mix). As a result the
longer message which enters Mix will perform different operations on T than the shorter one
which will already be in iteration 2 (or further).

To illustrate the problem, let’s consider a reduced version of the Mix function which performs
the same operations on T as the encryption phase does, i.e. T [i] = P [T [i] + T [i + 1] + i] and
T [q − 1] = P [T [q − 1] + e]. Suppose an adversary appends zero to the original message Z1 and
obtains one-word-longer message Z2. Z2 would enter Mix one iteration later than Z1. The first
Mix iteration for Z1 would change T in the same way as the last iteration of encryption of Z2

would. T would stay unchanged up to after the last iteration of Mix for Z1. The last iteration
for Z2 would leave all the q elements of T unchanged with an unacceptably high probability of
N−q. Such an attack is not possible in the full version of the algorithm.

Additionally, the variables (e and b) used in the T [q − 1] = P [T [q − 1] + e + Z[j]] step
of the encryption phase and in the T [q − 1] = P [T [q − 1] + b + j + q − 1] step of the Mix



function are different from each other in order to eliminate the trivial possibility of obtaining
equal T [q − 1] elements by appending one integer x = j + q − 1 to the original message Z.

An attack approach to append 2q words to have both Mix functions produce the same outputs
at only a cost of N−q (of equalling the T arrays right before Mix) would result in more changes
done to M by the longer message before reaching Mix than are necessary by our forgery attack
(Section 4.6) and the approach would exceed our attack’s complexity.

4.4 Diffusion effect of the Mix function

The number of iterations of the Mix function is set at 2q which appears to provide proper
diffusion effect of changes of the last word of plaintext/ciphertext onto the T and M arrays. We
tested two scenarios where we encrypted messages Z1 and Z2 with the same key and the same
initialization vector and analysed the resulting T arrays: T1 and T2 and the M arrays: M1 and
M2. Let L1 and L2 denote the lengths of Z1 and Z2, respectively. The two scenarios were:

– L = L1 = L2; ∀i ∈ {0, ..., L− 2}(Z1[i] = Z2[i]); Z1[L− 1] 6= Z2[L− 1]
– L2 = L1 + 1; ∀i ∈ {0, ..., L1 − 1}(Z1[i] = Z2[i]); Z2[L2 − 1] =random

We chose these scenarios as the worst-case ones for the diffusion effect (the last word of the
message has the smallest influence on T and M). The tests showed that the correlations between
T1 and T2 and between M1 and M2 are indistinguishable from the correlations we would expect
from two randomly generated arrays. The diffusion effect will be further magnified by the step
VMPC-R-KSA(M, q2, T, q, 1).

4.5 Security and implementation of VMPC-R-MAC

The most efficient message forgery attack we could find, described in Section 4.6, determines
the security of the scheme at N q(q+5)/2−1. For practical implementations we propose to choose
N = 256 and q = 8, which evaluates the security level to 256−51 (408 bits). If more was needed, we
propose to increment q by multiples of 4 due to implementation easiness of the M [h+i] = M [h+i]
xor T [i] step on 32 (or 64)-bit processors, which can execute 4 such operations with a single xor
instruction.

If speed is the priority, the scheme can be implemented with q = 4, which would yield the
security level of 256−17 (136 bits).

The proposed upper limit of q = 16 is set by the capacity of the VMPC-R-KSA algorithm,
which can process up to 256-byte arrays. At q = 16 the security level reaches 256−167 = 1336
bits.

However, the theoretical upper limit for q does not exist. The only modification the algorithm
would require to accept q > 16 would be a higher-capacity final-mixing function in place of the
currently used VMPC-R-KSA.



4.6 Our message forgery attack

The most efficient message forgery attack we could devise begins and ends before entering the
Mix function and changes several words of the message to obtain an unchanged MAC with prob-
ability N q(q+5)/2−1. Let Tg and Mg denote the values of the T and M arrays recorded for the
genuine message. For notation simplicity let’s assume h = 0. The attack is analogous for any
other value of h.

The attack begins with a change of q consecutive words of the message in iterations {i, i+ 1, ...,
i+q−1}. These changes should be made in such a way to make the T [q−1] = P [T [q−1]+e+Z[j]]
step change the following elements of T , compared to Tg (changes taking place with probability
1 after any change of Z[j] are marked with *):

in iteration i + 0: change T [q − 1]*

in iteration i + 1: change T [q − 2]*, T [q − 1]

in iteration i + 2: change T [q − 3]*, T [q − 2], T [q − 1]

...

in iteration i + q − 1: change T [0]*, T [1], T [2], ..., T [q − 1]

If these changes take place, the following elements of M will be changed with probability 1:

in iteration i + 0: M [q − 1]

in iteration i + 1: M [2q − 2], M [2q − 1]

in iteration i + 2: M [3q − 3], M [3q − 2], M [3q − 1]

...

in iteration i + q − 1: M [q2 − q], M [q2 − q + 1], M [q2 − q + 2],...,M [q2 − 1]

Here a total of 1 + 2 + 3 + ...+ q = q(1 + q)/2 elements of M will be different from those in Mg.
At this point the attack requires its first low-probability-event which is the necessary condition
to proceed. The adversary needs to obtain q − 1 equations in the next iteration i + q:

T [x] = Tg[x] for all x ∈ {0, 1, ..., q − 2}

This can be achieved with probability N−(q−1) and it stops T from making more changes to M .

To successfully forge the message, the adversary has to revert the changes already made to
M . This can be completed by proceeding analogously, i.e. by changing q consecutive words of
the message in iterations {q + i, q + i+ 1, ..., q + i+ q− 1}. These changes should be made again
in such a way to change the following elements of T , compared to Tg:

in iteration q + i + 0: change T [q − 1]

in iteration q + i + 1: change T [q − 2]*, T [q − 1]

in iteration q + i + 2: change T [q − 3]*, T [q − 2], T [q − 1]

...

in iteration q + i + q − 1: change T [0]*, T [1], T [2],..., T [q − 1]

If these changes take place, the following elements of M will be changed with probability 1:

in iteration q + i + 0: M [q − 1]

in iteration q + i + 1: M [2q − 2], M [2q − 1]

in iteration q + i + 2: M [3q − 3], M [3q − 2], M [3q − 1]

...

in iteration q + i + q − 1: M [q2 − q], M [q2 − q + 1], M [q2 − q + 2],...,M [q2 − 1]

At this point the attack requires two more low-probability-events to succeed. The first one is to
obtain q equations in the next iteration i + 2q:

T [x] = Tg[x] for all x ∈ {0, 1, ..., q − 1}



The adversary will achieve this with probability N−q. Note that T [q − 1] also needs to return
to its genuine value of Tg[q − 1] here. The final event is to have all the q(1 + q)/2 changed ele-
ments of M return to their genuine Mg values. This would take place with probability N−q(1+q)/2.

At this point the attack is successful with probability N−(q−1+q+q(1+q)/2) = N q(q+5)/2−1.
For q = 4 it evaluates to N−17 (136 bits for N = 256). For the proposed q = 8: N−51

(408 bits), for q=12: N−101 (808 bits), and for q = 16 : N−167 (1336 bits).
As far as we could analyse the algorithm this is the fastest way to revert all the unavoidable

changes of T and M caused by the smallest change of the message (a change of a single word). We
expect that attacks applying more changes to the message would cause more extensive changes
to T and M and that these changes would be not easier to control than in our attack, which
would result in the same or higher complexities.

4.7 The VMPC-R-HASH function

An attempt to extend RC4 into a hash function was proposed by Chang, Gupta Mridul Nandi in
2006 [18]. Collisions were found however by Indesteege and Preneel in 2008 [19]. The approach
we take here is different. A hash function can be obtained by setting a constant value of the key
and the initialization vector for the VMPC-R-MAC algorithm. We propose the following values:

KH = VH = {0, 0, 0, 0, 0, 0, 0, 0}

To produce the VMPC-R-HASH value of message ZH , input KH and VH to the VMPC-R-KSA
(Table 2) and process ZH with the VMPC-R-MAC (Table 3).

The obvious implementation modification of the VMPC-R-MAC algorithm is to substitute
the following steps in the EncryptMAC function:

Z[j] = Z[j] xor VMPC-R-Stream-Data
T [q − 1] = P [T [q − 1] + e + Z[j]]

with these steps, respectively (i.e. use a temporary integer variable temp in place of encrypting
the message):

temp = Z[j] xor VMPC-R-Stream-Data
T [q − 1] = P [T [q − 1] + e + temp]

The detailed analysis of this hash function reaches beyond the scope of this paper. However,
given the security analysis of the VMPC-R-MAC scheme and its resistance to our message
forgery attack of N q(q+5)/2−1 we assume that the VMPC-R-HASH should provide significant
resistance to collision attacks.

5 VMPC-R MAC test vectors

Table 4 gives the output words generated by the VMPC-R cipher with N = 256 for a given
8-word key (K) and 8-word initialization vector (V ). The table also gives the values of P and S
after the Key Scheduling Algorithm (before encryption).



Table 4. Test output of VMPC-R Stream Cipher

K; k = 8 {11, 22, 33, 144, 155, 166, 233, 244}
V ; v = 8 {255, 250, 200, 150, 100, 50, 5, 1}
P index 0 1 2 3 252 253 254 255

P value 233 177 250 165 43 123 169 201

S index 0 1 2 3 252 253 254 255

S value 235 158 236 32 10 29 145 30

output index 0 1 2 3 254 255 256 257

output value 253 15 246 141 70 145 94 212

output index 1000 1001 10000 10001 100000 100001 1000000 1000001

output value 187 151 6 108 8 21 65 215

Table 5 gives the output MAC of both the VMPC-R-MAC and the VMPC-R-HASH algorithms
for N = 256, q = 8.

Table 5. Test output of VMPC-R-MAC and VMPC-R-HASH

K; k = 8 {0, 0, 0, 0, 0, 0, 0, 0}
V ; v = 8 {0, 0, 0, 0, 0, 0, 0, 0}
Z; L = 1000002 {0,1,...,254,255,0,1,...65} (Z[i] = i modulo 256)

MAC/HASH index 0 1 2 3 4 5 6 7 8 9

MAC/HASH value 250 137 167 97 207 190 8 142 158 57

MAC/HASH index 10 11 12 13 14 15 16 17 18 19

MAC/HASH value 223 124 214 55 86 168 73 35 121 18

ciphertext index 0 1 2 3 254 255 256 257

ciphertext value 62 79 39 154 145 123 200 171

ciphertext index 1000 1001 10000 10001 100000 100001 1000000 1000001

ciphertext value 209 135 59 18 66 112 90 155

6 Conclusions

We proposed an algorithm to compute Message Authentication Codes for the VMPC-R stream
cipher. The design is cipher-specific in a sense that it utilizes some data from the cipher’s internal
state but it could be easily ported to work with different RC4-like ciphers. We also proposed a
simple method of deriving a hash function from it. The algorithm is scalable (using the value of
the q parameter) in terms of security-performance tradeoff.

We described our best message forgery attack against it, which for the recommended value
of q = 8 succeeds with probability N−51, which for the N = 256 used in practical applications
evaluates to 408 bits of security.

The primary objective of designing the scheme was uncompromised security. This came at
the cost of performance. While the bare VMPC-R stream cipher achieves a not-so-noble speed
of about 70 Mbytes/s on a 3 GHz desktop PC, the full authenticated encryption runs at the
speed of only about 30 Mbytes/s (using assembler implementations).

This performance disqualifies the scheme as a general purpose authenticated encryption
algorithm. However in applications not requiring high bandwidth or operating on small data
sizes (like e.g. text), the scheme works well and according to our research offers a very high level
of security.



References

1. Bartosz Zoltak: VMPC One-Way Function and Stream Cipher Proceedings of FSE 2004, LNCS, vol. 3017,
Springer-Verlag, 2004, pages 210-225.

2. Bartosz Zoltak: VMPC-R Cryptographically Secure Pseudo-Random Number Generator Alternative to RC4.
IACR Cryptology ePrint Archive Report 2013/768. https://eprint.iacr.org/2013/768.pdf

3. Bartosz Zoltak: Statistical weakness in Spritz against VMPC-R: in search for the RC4 replacement. IACR
Cryptology ePrint Archive Report 2014/985. https://eprint.iacr.org/2014/985.pdf

4. Bartosz Zoltak: Statistical weaknesses in 20 RC4-like algorithms and (probably) the simplest algo-
rithm free from these weaknesses - VMPC-R IACR Cryptology ePrint Archive Report 2014/315.
https://eprint.iacr.org/2014/315.pdf

5. Ronald L. Rivest, Jacob C. N. Schuldt: Spritz - a spongy RC4-like stream cipher and hash function.
http://people.csail.mit.edu/rivest/pubs/RS14.pdf. Presented at CRYPTO 2014 Rump Session. IACR Cryp-
tology ePrint Archive Report 2016/856. https://eprint.iacr.org/2016/856.pdf.

6. Subhadeep Banik, Takanori Isobe: Cryptanalysis of the Full Spritz Stream Cipher. IACR Cryptology ePrint
Archive Report 2016/092. https://eprint.iacr.org/2016/092.pdf

7. Subhamoy Maitra: The Index j in RC4 is not Pseudo-random due to Non-existence of Finney Cycle. IACR
Cryptology ePrint Archive Report 2015/1043. https://eprint.iacr.org/2015/1043.pdf

8. Sourav Sen Gupta, Subhamoy Maitra, Goutam Paul, and Santanu Sarkar: (Non-)Random Sequences from
(Non-)Random Permutations - Analysis of RC4 stream cipher. IACR Cryptology ePrint Archive Report
2011/448. https://eprint.iacr.org/2011/448.pdf

9. Alexander Maximov: Two Linear Distinguishing Attacks on VMPC and RC4A and Weakness of RC4 Family
of Stream Ciphers. Proceedings of FSE 2005, LNCS, vol. 3557, Springer-Verlag, 2005, pages 342-358.

10. Alexander Maximov: Some Words on Cryptanalysis of Stream Ciphers. Ph.D. Thesis, Lund University 2006,
ISBN 91-7167-039-4

11. Alexander Maximov, Dmitry Khovratovich: New State Recovery Attack on RC4 Proceedings of CRYPTO
2008, LNCS, vol. 5157, Springer-Verlag, 2008, pages 297-316.

12. Souradyuti Paul, Bart Preneel A New Weakness in the RC4 Keystream Generator and an Approach to
Improve the Security of the Cipher. Proceedings of FSE 2004, LNCS, vol. 3017, Springer-Verlag, 2004, pages
245-259.

13. Souradyuti Paul, Bart Preneel: Analysis of Non-fortuitous Predictive States of the RC4 Keystream Generator.
Proceedings of INDOCRYPT 2003, LNCS, vol. 2904, Springer-Verlag, 2003, pages 52-67.

14. On the (In)security of Stream Ciphers Based on Arrays and Modular Addition Souradyuti Paul and Bart
Preneel Proceedings of ASIACRYPT 2006, LNCS, vol. 4284, Springer-Verlag, 2006, pages 69-83.

15. Eli Biham, Louis Granboulan, Phong Q. Nguyen: Impossible Fault Analysis of RC4 and Differential Fault
Analysis of RC4. Proceedings of FSE 2005, LNCS, vol. 3557, Springer-Verlag, 2005, pages 359-367.

16. Itsik Mantin: Predicting and Distinguishing Attacks on RC4 Keystream Generator. Proceedings of Eurocrypt
2005, LNCS vol. 3494 of LNCS, Springer-Verlag, 2005, pages 491-506

17. Yukiyasu Tsunoo, Teruo Saito, Hiroyasu Kubo, Maki Shigeri, Tomoyasu Suzaki, Takeshi Kawabata: The Most
Efficient Distinguishing Attack on VMPC and RC4A ECRYPT Stream Cipher Project, Report 2005 / 037

18. Donghoon Chang, Kishan Chand Gupta, and Mridul Nandi RC4-Hash: A New Hash Function based on RC4
Proceedings of INDOCRYPT 2006, LNCS, vol. 4329, Springer-Verlag, 2006, pages 80-94.

19. Sebastiaan Indesteege, Bart Preneel: Collisions for RC4-Hash Proceedings of ISC 2008, LNCS, vol. 5222,
Springer-Verlag, 2008, pages 355-366.

20. Serge Mister, Stafford E. Tavares: Cryptanalysis of RC4-like Ciphers. Proceedings of SAC 1998, LNCS, vol.
1556, Springer-Verlag, 1999.

21. Lars R. Knudsen, Willi Meier, Bart Preneel, Vincent Rijmen, Sven Verdoolaege: Analysis Methods for (Al-
leged) RC4. Proceedings of ASIACRYPT 1998, LNCS, vol. 1514, Springer-Verlag, 1998.

22. Scott R. Fluhrer, David A. McGrew: Statistical Analysis of the Alleged RC4 Keystream Generator. Proceed-
ings of FSE 2000, LNCS, vol. 1978, Springer-Verlag, 2001.

23. Itsik Mantin, Adi Shamir: A Practical Attack on Broadcast RC4. Proceedings of FSE 2001, LNCS, vol. 2355,
Springer-Verlag, 2002.

24. Scott Fluhrer, Itsik Mantin, Adi Shamir: Weaknesses in the Key Scheduling Algorithm of RC4. Proceedings
of SAC 2001, LNCS, vol. 2259, Springer-Verlag 2001.

25. Jovan Dj. Golic: Linear Statistical Weakness of Alleged RC4 Keystream Generator. Proceedings of EURO-
CRYPT 1997, LNCS, vol. 1233, Springer-Verlag 1997.

26. Alexander L. Grosul, Dan S. Wallach: A Related-Key Cryptanalysis of RC4. Technical Report TR-00-358,
Department of Computer Science, Rice University, 2000.


